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CALCULATION OF LINEARIZED SUPERSONIC FLOW OVER
SLENDER CONES OF ARBITRARY CROSS SECTION

By Vincent R, Mascitti
Langley Research Center

SUMMARY

Supersonic linearized conical-flow theory is used to determine the flow over slender
pointed cones having horizontal and vertical planes of symmetry. The geometry of the
cone cross sections and surface velocities are expanded in Fourier series. The sym-
metry condition permits the uncoupling of lifting and nonlifting solutions. The present
method reduces to Ward's theory for flow over a cone of elliptic cross section. Results
are also presented for other shapes. Results by this method diverge for cross-sectional
shapes where the maximum thickness is large compared with the minimum thickness.
However, even for these slender-body shapes, lower order solutions are good approxi-
mations to the complete solution.

INTRODUCTION

The solution to supersonic flow over a cone of arbitrary cross section has been
treated extensively in the literature. References 1, 2, and 3, for example, treat this
problem with nearly exact inviscid formulations, which admit the existence of shocks and
vortical singularities induced by large crossflows. The present solution to linearized
supersonic flow over a cone of arbitrary cross section can be superimposed to obtain the
flow over a body which changes shape longitudinally. An example of this approach is the
classical solution for the body of revolution obtained by the superposition of circular-
cone solutions. (See ref. 4.) The superposition approach could possibly be applied to
the solution of the flow over wings, fuselages, and wing-body combinations.

A general theory for the solution of slender bodies as well as cones was given by
Ward in reference 5. Ward's theory indicates that for slender bodies, the velocity poten-
tial satisfies Laplace's equation in the cross-plane coordinates; and thus, the methods of
classical hydrodynamics can be used to obtain solutions. Ward's theory has been used in
detail only to obtain the flow over an elliptic body (refs. 6 and 7), since the transformation
from ellipse to circle by the Joukowski transformation is well known.

The purpose of this paper is to present a method for determining the flow over a
cone of arbitrary cross section based on the assumptions of supersonic linearized theory.



The method of solution will not depend upon incompressible cross flow (slender-body
theory); therefore, results by complete linearized theory can be obtained. The method
uses the conical-flow solutions to the wave equation first classified in reference 8.
These solutions individually have the property of vanishing at the Mach cone. The cone
geometry and velocities on the surface are expanded in a Fourier series to satisfy the

surface boundary condition.

The validity of this method is demonstrated by comparing the present results with
those from Ward's theory for the elliptic cone. Results from the present method are
shown to diverge when the maximum thickness is large compared with the minimum thick-
ness. Results are also presented for two cones of arbitrary cross section with slender-
body approximations. Finally, the present method is applied to the elliptic cone without
slender-body approximations, and results are compared with an extension of Ward's
theory presented in reference 9.

The method of this paper is presently restricted to cones with horizontal as well

as vertical planes of symmetry. With this restriction, the lifting and nonlifting solutions
can be treated separately and superimposed to obtain a complete solution.

SYMBOLS
Ax kth coefficient of body-geometry expansion
a,b cone cross-section parameters (see fig. 1)

B(x,r,0) function describing body surface

Ch nth coefficient in a series of superimposed potential solutions
Co pressure coefficient
k:oo

G body-geometry function, G = Ay cos (k6)

k=0,1,2
M free-stream Mach number
m number of terms required to approximate body geometry
N total number of superimposed solutions
n individual solution to be superimposed



Py kth coefficient of boundary equation

q velocity vector in flow field

Rk n kth coefficient of expansion, cos n§ G"
Sk,n kth coefficient of expansion, sin ng GP
U free-stream velocity

X,Y,Z body-axis system

x,r,0 cylindrical coordinate system (see fig. 1)
o angle of attack, deg

B = m?2 .- 1

o) | perturbation velocity potential
Subscripts:

k,m,n integer indices

METHOD OF SOLUTION

Governing Equations

A uniform supersonic stream of Mach number M flowing over a cone at an angle
of attack «@ with respect to the X-axis (fig. 1) is considered. Under the restrictions of
inviscid flow and small velocity perturbations, the flow field can be described in terms of
the perturbation velocity potential ¢ which obeys the equation

2 2 2
Po 10 1 % 2% g
or2 T Ar ;2 592 ax2

The general solution for the flow over a pointed body is obtained from reference 10,
equation (18), as

¢>(x,r,6) = - 5177'

Nn=0o0 X-fr ¢ h h"l x-§ d
cos noj n(&)cos (n cos i ) £

n=0,1,2 0 Vi - 62 - g2;2



where Fp(£) are functions to be determined by the surface boundary condition, If
£=x - Br cosh z,then df =1 - fr sinh z dz and since properties along a ray are con-

stant for conical flow,
Fn(€) = Fpt = Fp(x - Br cosh z)

Then the general solution for a cone becomes

N=00
o(x,r,0) = o E F, cos nef ( X - Br cosh z)cosh nz dz (1)
" n=0,1,2 cosh™!

The integrated forms of equation (1) were first given individually in reference 8 as
solutions to conical flow having the property that the perturbation potential vanishes at
the Mach cone., These perturbation velocity components are

Nn=©0 0
%qu = 2l. Fp cos nf 1% cosh nz dz (2a)
T 20 1,2 cosh Br
n=c
%? = - ';Ln E Fy cos n()Sv cosh z cosh nz dz (2v)
n=0,1,2 cosh-1 31'
and
%gﬁ‘l = - .2.1_r. E F,n sin né 1 (x ~ Br cosh z)cosh nz dz (2¢)
n=0’1,2 cosh -B?
Integrating equations (2) yields
n=«
%: -Cpz - Cy cos @ sinh z - EZ -, C;,, cos n@ anl:n_z_ (33)
n=4,9,
n=°c
9 _ . . inh( 1 inh(n - 1
-a-gi = CpB sinh z + g— Cy cos 9[(cosh z sinh 2) + z] +B n=§2 - Cy, cos “9[81121(nn++1))z + 512(I£n_ 1))ZJ (3b)
and
n=9°
180 _8 . . . inh i - i
- % =5 Cysin 6[(cosh z sinh 2) - z] - B n=§2 - nCp sin ne[mz(r(ln:l)l)z + 51’2125“_ l)l)z - cosh znsmh nz:I (3¢)




where

Fp
Cn =5
and
Z = cosh'1 X

pBr

With the appropriate boundary condition, the term n =0 is the required linearized
theory solution for the nonlifting circular cone and the term n =1 is the solution for the
lifting circular cone (ref. 4, pp. 215 and 223). The infinite series represents a general

solution to a cone with an arbitrary cAross section. It is expected that as the cross-
sectional shape approaches a circle, a lesser number of solutions will be required.

If the cone is slender, that is,
X

-‘3-5 >> 1
then
= -1x =~ _2_}5.
z = cosh pr In Br
) 2
sinh z ={[2— -1 = X
Bzrz Br
and
=X
cosh z = B

With the aid of hypergeometric identities, equations (3) become

n=

%il: -Co ln%’s - Z n;‘ 1 Cp cos ne(%)n
n=1,2,3
: n=oo
%? = CO(%) + Cq cos 9(%)2 + Z Cy cos n@(_,_;_)nﬂ
n=2,3,4
and
=00
12 -cysin 9(?1%)2 + Z Cp, sin ne@)ml
n=2,3,4

(4a)

(4b)

(4c)



In agreement with the slender-body theory of Ward (ref. 5), the velocity components

30 apa L30 gay ' ion:
o1 and ) satisfy Laplace's equation:

2 2
ﬁ_i'l....l.f_ql.,._l_ii 0

or2 TO0 12 552

Surface Boundary Condition

Since any body shape can be described as B(x,r,6) = 0, the surface boundary con-
dition for steady flow is given by q - VB =0 where q is the velocity vector, Com-
bining these expressions gives

5¢\eB i 5¢)\3B
(Ucosoz+ax 8x+ Us1nozcos€+ar o

U sin asin g+ 120|198 _
+(Usmas1n9+rae)r39_0

where all quantities are evaluated at the body surface. For flow over a cone
B=r-2=0
"G

and the boundary condition becomes with rearranging

S EQ— i .%
Uco.,a+ax- Us1nacose+ar G

G

+ (—U sin ¢ sin 9+-1-%)-5?

r 98

With the assumptions that a is small and U cos a >> %ﬁl and with the perturbation
velocities normalized by U,

- _singBl-.gl G123
1 a(coseG S1n989>—Gar+38r89 (5)
If G is expressed by
=00
X E
G=F= AkCOS ko
k=0,1,2

the velocity components (eqs. (4)) can be expanded in Fourier series and the boundary
condition can be put in the form
K=c0
Py cos k=0
k=0,1,2



Since cos 06, cos 6, cos 26,. .., cos kf are linearly independent, setting Pg =0,
Py=0,... Pr=0 willgive k linear equations for the constants Cgp, Cy,
Coy. .., Ck.

If k=0

G = Ay cos ko (6)
k=0,2,4

then the cone cross section is horizontally as well as vertically symmetric. The n-even
velocity contributions contain only even cosine terms, and the n-odd velocity contribu-
tions contain only odd cosine terms. Rewriting the boundary condition (eq. (5)) gives

1 - a(cos 6G -sin 9 aG) = (G Egl)even*- (a—G-li‘E + (G %>odd+ (ﬁlﬂ)

80, or 99 T 90 or 96 T 00
— A B 86 x BJeven, odd,

Constant Odd cosine series Even cosine series Odd cosine series

Therefore, with the assumption of equation (6), the n-even solutions are nonlifting solu-
tions and the n-odd solutions are lifting solutions, and the two problems can be solved
separately and independently. The nonlifting solutions obtained from equations (4) are

n=o

d 2
%:-Colng’i-f— 54 ———nzlcncosnBGn (7a)
n=2,4,6
N=co
%? = E Cy, cos ng G+l (7b)
n=0,2,4
and
=00
% %éﬁ = -2- Cp sin no GP*+1 (7c)
n=0,2,4

where the boundary condition from equation (5) is

_go,%G10
1 G8r+89r89 (7d)

The lifting solutions obtained from equations (4) are

N=o0 )
-gii=- E nzlcosnGGn (8a)
n=1,3,5



nN=oc°

-g? = E Cp cos no Gh+1 (8b)
n=1,3,5
and
n=¢co
18 Cp sin ng g™ (8¢c)
T 90
n=1,3,5

where the boundary condition from equation (5) is

X d 198
-a(cos 6 G - sin 6%5—):G-8—33+%;-£
The ability to split the boundary condition into two parts also holds for equations (3)
and has previously been demonstrated only for the circular cone in reference 11, page 241.
With slender-body assumptions, the nonlifting solution contains a Mach number variation
only in the first term of the 8¢/8x expression, which does not enter into the solution of
the boundary condition. The lifting solution is entirely independent of Mach number.

Expansion Procedure

There remains the necessity of stating the procedure by which the infinite series
are truncated and a finite solution obtained. Results of the expansion must approach
those obtained by Ward's theory as n approaches infinity. Since the expansion proce-
dures for the lifting and nonlifting solutions are similar, only the procedure for the non-
lifting solution will be given.

k=m

(1) Expand G in the form g Ay cos k6

k=0,2,4

(2) Choose n=0, n=2, n=4,. .., n=N number of terms and expand the
velocity equations (egs. (7a) to (7¢)) in the form :

n=o0 n=N k=N
9
S‘?:-Colnz—ﬁG—- 5 n;ICncosneGn=— E n;lcn E Rk,ncoske
n=2,4,6 n=0,2,4 k=0,2,4
n=o0 n=N k=N
El;"é% = E Cn cos n G = > Cn > Ry j, cos ko
n=0,2,4 n=0,2,4 k=0,2,4

[- -]



and S n=N n=N
é .g% = _;_ Cp sin ng G = > Cn > Sk,n sin k@
n=0,2,4 n=0,2,4 k=0,2,4

Although the function cos nf GP is completely defined by a series to n(m + 1), it is
truncated at N.

(3) Solve for the boundary condition in the form

1 =G2(é;—9) + 32563 ﬂ)

E:
ar o6 Gr 96

(4) Solve for pressure coefficients by

cox238-o(£20F (2]

This expansion procedure is best illustrated by presenting, in detail, the solutions
for N=0 and N =2, These solutions are presented in the section entitled "Nonlifting
Solutions."

RESULTS AND DISCUSSION

The expansion procedures described previously must converge to well-known solu-
tions based on the same assumptions. Therefore, a comparison of results from this
theoretical method for the elliptic cone with those from well-known solutions is an impor-
tant test.

Nonlifting Solutions

Elliptic cone.~ As an illustration of the expansion procedure, the lowest order solu-
tion (N = 0) and the next to lowest order solution (N = 2) will be presented in detail for the
elliptic cone. The geometry function G for the elliptic cone is

G =3 =\Ag + Ag cos 20

where
al 4 b2 _ b2 - a2
AO = R Ao = ~—5
2a2p2 2a2p2

and a and b are the semimajor and semiminor axis, respectively. For N =0 the
velocity components obtained from equations (7a) to (7c) are

.§.¢_=— ) gg..:— a+b
P ColnB ColnBab+...



and

1 % _
Gr 5 O+. ..

The boundary condition is

1= GZ(% g%) + % aie(Gz)(al? .g_gl) (9

By substituting in velocity components and geometry, this equation becomes
1= (Ag + Ag cos 26)Co

or
1- Aoco - COA2 cos 26=0

and the boundary condition is now in the form
k=N

E Py cos k6 =0
k=0,1,2
Therefore,
Pg=1-AgCy=0
or
Ag a2 4 p2

and the velocity components are

8¢ __2%2 | a+b
ox a2 +b2 Bab

129 _ 2a%?
G or 32 ,p2
and
1 3 _,
Gr 90
The pressure coefficient then becomes
C =228 G2 (u@)z,,(_l_zda)z (10
p ox G or Gr 36 )

10



or

2.2 2,2 2 _ 2
cp=4ab2/1na+b-1>+ 2ab21+a bzcos:ze) (11)
a2 4+ p2\ pBab a2 + b a2 + b
For a=b (slender circular cone),
=932 2 .1 12
Cp=2a <ln'ga 2> (12)

Equation (12) agrees with that presented in reference 11, page 234. Ward's slender-body
theory as given by Van Dyke in reference 9 is

4 ab
= —_ . 1
Cp =ab [2 In ) 2+ 53 2TJ (13)

a“sin“n + bzcos
where
a
tann=—=tan @
=%

This exptression can be shown to have the following Fourier series expansion in 6 (see
ref. 9):

(—12
2.2 : 2 _ 2
Cp = 2ab liln B(a_i—b-)_ - ];] + —gza'-—b—-i »<aT-—p—2—>COS ko6
a“ +b k=0,2,4a +b
For k=2, the expression becomes
4 2a2p2 a2 - p2

= S S 20 4
Cp 2ab[ln3(a+b) 1J+a2+b2<1+a2+b2cos (14)

The expression for the present method (eq. (11)), where N = 0, is repeated here for
convenience:

p= 4a%p” <ln a+th _ 1) + _2a2b2 <1 + __aZ - b2 cos 26>
a2 + b2 pab a2 + b2 a2 + b2

Comparison of the present method (eq. (11)) with Van Dyke's solution (egs. (13) and (14))

is shown in figure 2 for M= \2, x=1, a=tan 30° = 0.57735, and b = 0.57735, 0.5, 0.3,

and 0.1. Although the geometry shown in this figure is far beyond the range of linear

theory, and certainly slender-body theory, the purpose of this figure is simply to compare

theoretical results. ‘

In the present method for N = 2, the velocity components (given previously as
egs. (7)) are

11




%2: -Co ]_n‘_?'_g_ §-Cz cos 29G2

B 2
Ag
= -Co<ln %;-'—bh -2 .-~ 2 cos 29> - -g— Co (—2— + Ag cos 26) (15a)

19 _ 26 G2
G o Cg + Cg cos G

Ag
=Cqg + C2 < + Ag cos 26 (15b)
and

o222 0.+ Cy sin 20 G

r 96
=0+ Cg Ag sin 26 (15¢)
Substituting equations (15) into the boundary condition (eq. (7d)) yields
CaAp
1= (Ag +Ag cos 26){Cq + —5— + CaAq cos 26
(16)

- Ay sin 26(CaAq sin 20)
By expanding equation (16)
CoA CoA
I} - AO <Co + 2>} - <C2A02 + Azco + 22 2z>COS 26

A
- <C2 02A2 + C2A0A2> cos 46=0

is obtained, and the boundary condition is now in the form:
k=N
Py cos k=0
k=0,1,2

Therefore,

CA2
Py=0=1-Ag(Cp+

A2
Po =0 = CoAnZ + AgCq + Co —2
2 =0=0Ca8p + AL+ %23

12




|

or
'Ao\2 A
c0=_1_1+l_2 and c2=_._2.
Aol 2\Ag Agd

A comparison of the present method for N =2 with Van Dyke's solution is presented in

figure 3.

The expansion procedure just illustrated has been generalized and programed so
that higher order solutions can be obtained. Figures 4 and 5 show results for N =8
and N = 32, respectively. Although the calculation procedure does not converge for small
eccentricity, lower order solutions are good approximations to the complete solution.

Arbitrary cone.- The present method has been used to calculate the pressure dis-
tribution over cones with the geometry shown in figure 6. These results are shown in
figures 7 and 8 for N =8 and N = 32, respectively. The results for the most winglike

cone are diverging.

Lifting Solutions

The lifting solution has been shown to be independent and separable from the non-
lifting solution. Bolutions are obtained by superimposing n-odd solutions in the identical
manner as was done with the nonlifting solution. Again the agreement between the results
from the analytic solution to the lifting elliptic cone and those from the present method
will be the important test of the expansion procedure. It should be noted that the lifting
solutions are independent of Mach number.

Results for the elliptic cones previously examined are presented in figures 9 and 10
for N=7 and N=31 at a= 100, respectively. These results also show signs of
divergence in the thin-wing limit.

Figure 11 shows results for the cone of arbitrary cross section at a = 10° for
N = 32. Large changes in pressure are shown in the region where the straight-line geome-
try changes to circular geometry. This trend is also indicated by the experimental data
of reference 12,

A listing of the computer program to calculate the pressure distribution around lift-
ing cones of arbitrary cross section with slender-body theory is presented and discussed
in the appendix. Computational time for obtaining pressures with this program has been
estimated at 1 minute per case for N = 32 on the Control Data series 6600 computer
system at the Langley Research Center.

13



Results Without Slender-Body Assumptions

The present method of Fourier series expansion can be applied to the solution of the
cone with arbitrary cross section without slender-body assumptions. The velocity com-
ponents, in this case, satisfy equations (3)., Results from this solution are presented in
figure 12 for several elliptic cones. The solid line represents results obtained using the
"not-so-slender'" solution of reference 9. The solution of reference 9 does not reduce to
the well-known circular-cone solution of reference 4, page 214. However, the present
method does reduce to identically the correct circular-cone solution.

Theoretical Limitation

For all the results shown, the present method diverges in the thin-wing limit; how-
ever, the lower order solutions gave good approximations to the actual solution,

Ward, in reference 5, indicates that slender-body theory should not be applied to
cross-sectional shapes where the local radius of curvature is small compared with the
maximum thickness. This restriction could explain the divergence of the present method
as the geometry approaches a wing. It is important to recognize that the analytic solution
to the elliptic cone given in reference 6 was achieved only after the transformation from
ellipse to circle by the Joukowski transformation. The results of the present paper would
indicate that in order to achieve converged results for arbitrary winglike cross sections,
an initial transformation would be necessary.

CONCLUDING REMARKS

A Fourier series expansion procedure has been developed to solve for the flow
around slender cones at supersonic speeds. The results for an elliptic cone reduce to
those obtained by Ward's theory. Both lifting and nonlifting solutions to the arbitrarily
shaped cone can be obtained, except in the thin-wing limit where the method diverges.
The present method has been programed and applied to cone solutions without slender-
body assumptions with good results.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., June 12, 1972,
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APPENDIX

COMPUTER PROGRAM FOR CALCULATING THE PRESSURE DISTRIBUTION
AROUND SLENDER CONES

The calculation procedure described in the main body of the paper for obtaining
pressure distributions around slender cones has been programed for high-speed digital
computation, The purpose of this appendix is to provide a description of the necessary
input and available output as well as a FORTRAN IV (ref. 13) listing on the source pro-
gram. An example input case and the resulting output listing are included.

Description of Program

The program reads in the necessary number of lifting and nonlifting solutions to be
superimposed. The coefficients of the required geometry function are computed by
standard Fourier expansion series techniques (numerical integration). The matrices °
given by the boundary condition are formed and inverted using Gaussian elimination. The
values for Cp that result are used to compute the velocity components and pressure
distribution. The program listing that follows has the geometry of an elliptic cone built
in. However, this geometry can readily be replaced by any arbitrary description of
geometry.

Program Listing

The FORTRAN 1V listing of the source program used on the Control Data series 6600
computer system at the Langley Research Center is as follows:

COMMON THETA(TR1II «Q(18)) ¢TI TePT4Q0«QQ(A40)«A(17+18)sR(17)sK
DIMENSION G(121)s~*RO(32) RO(32)sR(320+32)
1P(32)y RR(32+732) TT(32+32)¢F (181)eH(181)
CFF(181) «HH{1BIYoeC(32)4CX(32)9CP(32)+CT(32)sCP(151)
39AR(32932)eAS(32+32)4AT(32+32)

REAL MslAM

NAMELTST/NUML /MM g N o NN

NAMELTST/NUMZ /My ALPHA

READ (SeNUMTY

WRITE (64NUM1)

DO 10 I=1l.nN

RO(T1Y=0,

LL=MM#N

DO 10 J=1l.0LL

10 R(JeINV=0o

PI=3,141592653589793

AA=,57735

83=,3

THETA (1) =0,

D0 1 I=2s+1AR1

15



APPENDIX - Continued

1 THEFTA(I)=THETA(I=1)+}.
DO 2 1=14+31R1
THETR=THETA(] %P /18,

2 G(I)=SORT((AA**2*8H**2*(RH**?-AA**?)*COS(?.*THETQ))/(2.*AA*“2*BB**

12))
100 FORMAT(?X3F1l6,8)
D0 3 K=1s2

- DO 4 1=14181

4 W(T)=6(T)#sK
FI=MMaK
CALL INTER
RO (KY=09
DO 5 J=2s71192

5 RIJeKIY=QQ (J)

3 CONTINUE
bO 7 1=1,y181

7 Q(I)=ALOG(2e%G(I))
1I=N
CALL INTER
P0=Q0
DO B U=247T102

2 e (Jdy=-rwi )
3O 20 L=lenN
wwh (t Yy,
0 24 K=len
24 RRAIK L Y=,
nd 21 T=lelx}
THET 2=THRTA(CT)YRPT /10,
P21 OUD) =0 L#THETRY G (T 3
T1=N
CALL INTER
RG] Y=
PO Po J=ZelTel
PP RRJ,L)=wl D
24 CONT e
ND 4 L=lely
) o6 K=) eni
s4a TTUKLY=C,
D) 41 I=iel <]
. THET2=THe TA(T)RPTI/1A),
41 DY =SINILHTHETRI G (T 43
Ti=N
CALL NNTFRE
) 40 Jsrefte?
40 TTAJ. Y=a00 1)
G&{ CONT rrulF
W) 54 T=le)sr]
THETn=THFTA (1Y RPI/1KRD,
H{I)=" :
F{TY =R ()
KK =244
NO 5 K=leKi
HII)=H(T) ~K#R (Ko 2) RSTo ) (K#TUFTR)
S5 FLI)=FA{I) +R (K2 #COS{rHTHFTR)
54 CONTTHRUE
NO Sy I=lela)

16
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51

53

61

oy 4

AN

A

6
67

7¢

124

APPENDIX - Continued

THETRE=THETACTI#PTI/1KD,
FF{Iy=PO (D)

"0 Sy K=l
FRUIV=FF (1) +R K« IV RCOS(K#THF TR
NO 52 I=lsl2l

nTY=F (1)

TI=N

cALL TNTER

A(la1y=00

NY 51 K=PelTal

L=K/2+1

r{LeT¥=QUIK)

NO 61 J=leNe.?

SI=ds2+]

n) AY [=1e1R1)
THETo=THFTA(TIH#PI/1R0,
FFRITY=RRu (.0

HH{TY =04

N) 61 K=1leN

FRIIYV=FF (1) +RR(Ke D) #CNAS(<KHTHFTR)
HHOTY sHA(I) + TT (K s JY BSTN(K#THF TR)
N A2 I=leln]

NI =FF ()R (1) 4, 5%#H(TIH*AH(T)
TT=N

ALl TNTER

Alle 1) =Uy

D) 67 K=ol Te2

L=K/2+1

A(Le. D=0 (x)

| =N/242

Allet¥=1.

DO 67 J=Z2eNe?

k=Jd/2+1

A(Ka1 Y=0,

T=2# 4P

TFLI . GT1GY TO A7

NG 62 Jz=]eNe?

k=J/>+]

L(kge1 V=0,

N0 65 L=ceNe?

LL=L/s>+]
T=?*MN*M”*L¢L42

TF{I ,AT.NIGN TO 67

NO 68 J=leNer?

K=J/2+1

A(Kol i d=0o

CONT THUE

K=/ 2+1

K=N/2+1]

CALL AATHIX

Co=R1)

NO T~ L=PeNaep

NI WS |

c(lLy=2(J)

NG 120 L=l enN

N0 174 K=laetiy

AR(K . )=y,

NO 121 I=1,4181
THETL=THETA(TI®PT/]1ARN,
D(I)=COS(L#*THETRY#G T s
YT =N

call aINTER

17



APPENDIX - Continued

N 1722 Jd=lerNeg
122 ARG =i (L))
170 rONTTWUF
N 1R L=lenN
ND 1w K=l anim
136 2SIKY=0,
) 131 T=le1nl
THETO=THr TA(T)}ERT/1HG,
131 D(I)=CNSLETHETR) #G (T %y
TI=N
CoLL AINTYR
N0 172 = enitier
132 aS{JtY=0ud
130 CONTTNUE
N 14n L=aleun
) 1la4a K=] ortN
14 AT (Kt Y =ua
N lel T=1le1R]
THET=THETACTIRP I/ IR0,
141 D(T)=QINILFETHETRY #G (T #3¢
TT=N
rall AONTER
N0 1ol JzleniNe2
142 AT(JJ Y= 0 )
1449 CONTYHUF
N 1473 Jzlenitiey
J= 11V /e
n) 1e1 I=le}ni
THE T=TH-TA(T)I®PI/1&Y,
FF(Ty=ue
HH(TY =0,
N 1.1 K=] ek
FRUIY=FF(I) +AS(KeJ) #CNS(KHETHETR)
161 HHII)=HH(I) + AT (Ko J) #*STN(K#HTHFTR)
N0 162 I=ls181
162 A(I)=FF (L) #E(F)+,SHHIT)#HH(T)
TT=Nwm
CALL AINTER
NO 143 K=leMNNe?
L=(K+1)Y /¢
163 A(Ly 1) =UQR(K)
SO0 READ (SeNUMP)
TF(ENF+5) 2r0+9
Q WRITF(AeNUMD)
LAM=cRT (M#s#p=1,)
PP=PA s ALUG (1 o /1LAM)
XCONF==] (RCo#PP
YCONE=CO
NN BAa J=/aNG 2 :
XCONe ==1 . #*FIL.OAT (J+1) /FLOAT C P ERRE (D) HC LYY +XCOF
R() YCONs=C({J) #0RU(J)+YCONE
TCONC=Q,
NO 82 [L=2«N.?
CX{Ly==1.%00%P (L)
CRILY=0.
PT(L):O.
N0 B2 K=7eNe? )
CXUY==1.#¥F| AT (K+ 1) /FLOAT(KY #RW (L «KIRC(K)+Cx (L)
CRILY=C(K) #DR (L «K) +CR (L)
G2 €Ty =C(RI =TT (LK) +(T (L)
nD 9n LLl.=1.1R1
THET o=THe TA(LLLY®PT /120,

18



APPENDIX - Continued

I=XCnNE
V=YCANE#G(LIL)
=04
nd 9y L=zeNe?
UzUsr X (L) #COSTLHTHETR)
VeV+rRLISCHASILRTHETRY #GOLLL)
91 W=W+rT(L)#STIN(LH#THETRY#G(LLL)
CPILI L) == 2 (Us (ViR24 git3t0) /D)
3¢ rONT TNUE
ALPHO=ALFHA*PTI /114G,
o) 1nt T=1.181
THETo=THETA(T¥I®PI/ 180,
101 ﬁ(I):C(I)*Cn%(THFTR)-.Q*CIM(THFTR)*H(I)/H(T)
FI=N«
CALL AINTER
l.={Nna 1) /7240
N0 102 J=leNNg?
K=(J+1) /7
102 A(Kaep )Y==)4#aALPHR#QQ (.1
K={Nw+1)Y/¢
CALL MATRIX
NO 170 L=1esMNep
J={L+ 1) /¢
170 c(LYy=R{D)
NY 122 L=leniNe?
CXLY==P A2 (Ls1)H#C (1)
CRLY=C()#as(Lel)
CTYy=C(IY#aT (e 1)
NG la? K=34MNe2
CXALY==1a% (K1) /KFAR(L « KYHC ()Y +CX (L)
CRILY=C(n)#AS (LK) +CR (L)
182 cTtLYy=C () #aT (LK) +CT (L)
WMRITE (e 702
207 FORMAT(TXSHTHETASI0X6HCP e A=049X1THOP «A=CP o A= o TXTHCPTOTAL /)
NO 1gn LLL=1+181
THETo=THETA(LLL)Y#®#PI/120,
AU=0,
AV=0,
AW:Q.
PO 101 L=leMNe2
AU=A+CX (L) #COS(L*THETR)
AVEAV+CRALY#COSIL*THETRY #GA (LLL)
191 AW=Aw+CT(LY#SIN(LRFTHETR)Y G (LLL)
CDA=A[PHR**9-2.*AU-(ALPHH*CO§(THETQ)+AV)**9-lALPHH*§TN(THFTH)
1-aW) #02
CPT=CPA+CP (1 LL)
190 WRITF (6201 THETA(LLLY +CP(LLIL) sCPACPT
201 FORMAT(?X4F16eH)
0 Tn S00
200 STOP
FND
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APPENDIX - Continued

SUBRNUTINE INTER

COMMOAN THETA(1IR1) 90 (121) e IToPTeQueN0(640) AV 7413)eB(17)eK
NIMEMSION F (181}

AQEB=O [

no 1 1=2+.181
AREB=ARER+ (0 (1) +Q(T1~-11v) />,
NO=ARFB/L&0, :
N0 2 J=2¢1142

ARER=(,

F(ly=n0(1)

N0 3 T=2+181
THETR=THETA(TY®PI/18N,
FLID)=0(I)#COS(I*THETR)
ARER=ARER+(F(I)+F (T-1VV1/2,
ORIV =P H¥ARFR/ 1R,

RFTURM

FND

SURROTTHNE ONTER

COMMAOT THETA(LIRI) «Q (121 e TTaPialyadti(b4u) eA(17a]R) aR{[7) ek
NIMESIONM FY&R])

0 2 1=2+11.2

AQER:I-‘.

F(ly=n(l)

D0 3 T=2+ ¥

THET2=THe TA(T)#*PT /180,
FADY =G (T RSIN(I#*TRETR)
AREB=ARFr+(F(I)+F (I-1V1r/ >,
NR(IV =2 FARER/ LR,

RETULR

Fid)

QUBRAIITINE wATRIX

FOMMEST THETA(LIABL) «Ul1AL) e TTePT el el laay) ad (1 7alRYenl /) ax
|.=K+y

) 4 TT=leK

)l T=TTeK
TECA(T AT ,50eCadly T |
r=A(r.11"

w02 I=1lebl

A(Te« N=8(Ie N/C

CONT THUFR

IFIT,,FOKYRO TO o

AR REY

N 1 T=dder

TFA(TSIT) o5NeCedt:0 T 17
n) 3 1=1eL

A(Te N=A(ITa.=A{1s))
CONT v iUF

CONT 1MUFE

rog 5 1=1eK

QLT)=n,

B(K) =B (KeK+11/8(KeK)
KK=K=1

N 6 J=1eKK

T=K=1t

RIIY=A(T+K+1)

LL=I+1

NO 6 L=LLsK
R{I)=R(TV-RiLI®A(I L)
FETURY )

END
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SURRAUITTIMNE ATNTER
COMMAN TRETA (18140 (121) aT1ePTa00QU(H40) eA(]1791R)GR(L7) oK
NTMEMSION Fe181)

Q0=g,

N0 2 d=lella2
aRPER=N,
F(ly=0(

NN, 3 1T=241AR7
THETe=THETAIT)*PI/180,
FID) =0(T) #CNS (IR THE TR)
ARER=aRER+ (F (1) +F (I-11)/>,
NQ(Jy=PHARFR/1RY,

RETUD:

END

SUBRNUTINE AONTER '
COMMAN THETA(Y81)4Q(191)4TITePTs00«00(H40)YsA(PEe26R) eB(2%) oK
NDIMENSION F(181)

NO 2 1=1e11.7

AREB=0.

F(l)=0a(1l)

Nnd 3 1=29+1R1

THETR=THETA (I¥*®#P1/180,

FA{D) =Q(I)RSINTIRTHETR)
AREB=ARER+(F () +F(I-1V) /7.
RETURN

END
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APPENDIX — Continued

Input

A single case consists of the determination of the pressure distribution around a
given cone at a given Mach number and angle of attack. It is necessary to input the num-
ber of terms in a Fourier expansion series to accurately represent the cross-sectional
shape and the number of lifting and nonlifting solutions to be superimposed. For the
loading routine used in the program, any column except the first may be used on the input
cards. A decimal format is used for the input quantities. A description of the required
inputs in the correct order and the FORTRAN variables used by the source program are

as follows:

F\gRriTa%ﬁN Description

$NUM1 Arbitrary name required by the loading routine to define the first input

data block
MM Number of terms necessary to accurately define cross-section geometry
N Number of nonlifting solutions to be superimposed
NN Number of lifting solutions to be superimposed
$ Denotes end of case (column 2)

$NUM2 Arbitrary name required by the loading routine to define the second
input block

M Free-stream Mach number

ALPHA Angle of attack, deg
$ Denotes end of case (column 2)

The system loading subroutine in the program (name list) is quite flexible in that
the order of the input cards is unimportant and successive cases can be run by repeating
the identification and $NUM cards followed by only the changed parameters and a $ card.
An example of a set of input cards is given by the following listing of the inputs necessary
to compute the pressure distribution around an elliptic cone (a = 0.57735 and b= 0.3) at
M=1.414 and o =10°,

22



APPENDIX —~ Continued

LU
A = E
H = i1
(I = 2]
he i)
ENRITR
f = e lHYas e 1.
ALFHA = el s+ “a
DE )
Output
An output listing for the example input is as follows:
THETA CPsA=0 CPsA=CPyA=0 CPTOTAL
0. 5,1078B7096F-01 =?,747R366RF=01 2.,36003428F-01
1.00000000FE+00 =,10032387E-01 =2,74110494F-01 2,3592)893E=-01
2.00000000E+00 ©,07740580E-01 =2,72090A84F-01 2,35649846F=-01
3.00000000F+00 =,03845408BF-01 -2,68729705E-01 2,35115704€-01
4.,00000000E+00 4,982BA770E-01 -2,64055687F=01 2.34231183F=01
5.00000000F+00 4.9106R529F=01 =2,5814603n2F~01 2,3292R227E-01
6+00000000F+00 4.R2309A18E-01 =2,51117846FK=01 2,31191772€-01
7.00000000F+00 4,72270014E=01 -2,43101597E=01 2,29078417F-01
8.,00000000F+00 4,.A1340232E=0L =2,34A26219K=01  2,26714013F=01
9.U0000000F+00 4.49993740E=01 =2,25723695F=C1 2,2427404nt=01

1.00000000F+01
1.10000000F+01
1.20000000F+01
1.30000000€+01
1.40000000F+01
1.50000000F+01
1.50000000F+01
1.,70000000F+01
1.8000006UF+01
1.90000000F +01
2.0000000UF+01
2.1000000GF+n1
2.20000000F+01
2.30000000F+01
2.4V000000F+01
2.20000000F+u1
2.60000000F+01
2.70000000F+n]
2.80000000F+n1
2.90000000F+91
3.00000000F+01
3.10000000F+01
3.20000000F+01
3.30000000€E+01
3.40000000F+01
3.20000000F+Q1
3.600000000F+01
3.70000000E+01
3.8U000000F+01
3.9000000CF+01
4,00U00000F+01
4410000000F+0n1
4,20000000F+01
4,30000000F+0G1

4438712943E-01
4e27907672E-01
4.17548042E-01
4,U8620592E~31
4.00182060E~01
3,92317372F~01
3.84798509E~01
2,77425984E=-01
2.73096773E~01
2 hFPRILTAUE~TI
F.H55779A86F~C1
,491401R7TE-D]
2.43125946E-01
2.37879739€E-01
7.33429788F =01
3.796076410E-01
2. PH41A390F=-T31
e ”3IIVRTOBF-U]
2,203912”23E-¢1
1. 17243765E£-01
2,13924440E-01
2, 165200858E=01
1, 07206015F=-01
2.041A3490E-01
I,01614371F-01
2.,99573433F-01
2.98u2055TE-Ul
2,9AB1224F-¢1
2,95743783E-01
2,9460R21YE-GI
?.93256~05F~-01
2.,91038232F~01
2.89215403E=-01
2,B7933450E-01

=2 167TRTRPRE=4]
=-2.,08083A48F=-11
=1,99205274E~41
=-1,92753613F =41
=-1.84°23/A471F=N1
=1,7818%5752F=01
“1,71~90974F =]
-1,A583K0A3F=J}
=1,595450A49F =41
-1,534850Q0F~"1
=-1,477917725=01
-1 ,42504n1R2F=0]
-1,374497%4F =01
-1,32791A%3F=-ul
—1.28A193a0F-01
=1,7422130u/2F-01
=1,21r2nPukF=t11]
=1,18519,73F=01
=1,157693A0F =11
-1,12361939F-u11
=-1,10125%85)0F=-u1
=1,0726R302E =01
~1.04373341F=01
-1,017R4013F=-)1
=3, RI792P14GF~-07
=Q_.A6IGGAYTIr =T/
=9,45R647Q4F =02
=9, 281AQRALF =17
-0,12574917k-u?
—H 984 TREY3F =02
-~ R3S RGLTE=1P
=R ,6R313133F=07
=R,51499359G~22
-R,34501530E~97

2e21925314F=-01
2e19824024F=-01
2.189427ARE=-01
2e1637A309F-n]
2e 15 3G6A4RRF~=0]
P2es14231620F=01
24131u7535F=01
2e11487901E-01
2410951 704FE=01
2.,091496450F=01
PdUTIRTYYUF =01
P eitHY9a( AR =011
2auB0TARIQIE=-DL
PeUSURR(OIAF=01]
AeutHlNgaxt=nl
Ped G TRE1NRE~0]
PeUs Yy 20al =01
Peva {794 yE~]1
?eu4H21803F=-01
2eud4ct1R2AE-01
?eU379R85020E=0)
PeU3RTPHAGF =01
?eu2R33574F =01
2 eU2O9R57T7E~(0]
2euPH351828=1)]
24U293RI7PFE~01
P.U34340776-01)
2euv3995341F =01
P ULLRRP2G1F=0]
2outHybnAk=0]
PeU&AQuTALFE=G]
Cala4nLHATHF =01
2eUab]lAlasF =01
Peuba7IBNE-01

23



4.50U00000E+0]
4.50000000E+01
4.60000000E+61
4.7U000000F+n1
4.8U000060E+0]
4.90000000F+C]
5.000000005+01
5.16600000F+01
5.2V000000F+01
5.3000000UF+01
564U000000F+01
5.50000000F+01
5660000000F+01
5.700GC000F+C1
5.80600000F+n]
5.90000000F+(1
6.00000000F+0)
6.1000000CF+01
6e200000G0E+01
6.30000000F+n1
6.40000000F+01
6.50600000F+01
6460000000F +01
6.7000000UF+0]
6.80000000F+01
6.90000000F+01
7.00000000F+01
7.10000000F+01
7.2V000000E+01
7.30000000F+01
7.40000000F+01
7450000000E+01
7.60000000F+01
7.70000000F+01
7.80C00000F+01
7.90000000£+01
8.00000000F+01
8.10000000F+01
B.20000000F+01
8430000000401
8.40000000€+01
8.50000000E+01
8.60000000E+01
8.70000000€6+01
8.80000000F+01}
8.90000000E+01
9.00000000E+01
9.10000000E+01
9.20000000E+01
9.30000000F+01
9.40000000E+01
9.50000000E+01
9.60000000£+01
9.70000000£+01
9.80000000F+01
9.90000000E+01
1.00000000E+02
1.01000000F+0?
1.02000000E+92
1.03000000E+02
1.04000000F+0?
1.05000000E+02
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>.A61B11ATE=01
P.R4T25R46E-31
2 ,A360ITIG4F=0 1
5 .B29RGAT2F~(
2,82599365F =01
2,82322206F-11
2.81970342€-61
2,R13983732£-01
2.HUB45A(0E~01
2,79449029F-01
2, TR236nG0E-01]
D, 77TuT7V174E=31
P.76134841E-01
2,755%14769FE-01
2.75231556F-01
2, 752v5460F-y]
2, 7SERT4RIE-D1
2,75305742F~vul
2.,75118034E-31
2, 76654005E-01
?.739407290E~-01
2.73u81075E-~G1
2,72¢37957E-01
2,71566413F-01
2.71176A18F=01
P TLU9SPHOE-01
2,71258887F=11
2,71533+10E-01
2. 71757s05€E~-01
2.71790425F~-01
2.71557309€E-(1
2.71070249F-01
2, 70426246E-01
2,63773R18£-01
2.,69266425E-01
2.,69017241FE~Q1
2,69061834F-01
P eB693479046FE-01
2,69752028F-01
2., 70117R398BE-01
2. 7T0305426E-01
2.702349065g~-01
2.69907298E~01
2.,69413874E-01
2,68894787E-01
2.6850448%E-~01
2.68359R93E~01
2.6850448%9E-01
2.,68R94787E-01
?.69413274E-01
2.,69907298£-01
?.70234095E-01
?.70305426F-01
P?.70117898E~01
2.69752028E~01
7.69347946E~01
2,69U61R34F~-31
2,69017741E-01
2,6926A425E-01
2,69773818F=-01
2,70426R46F =01
5.71070849E-01

-2, 16219472 F~02
=7.99524(77F =07
-7.83392045E-(27
-7.69437355F=0p
=7 ,57<22RO24F =07
-7, 47Ral9LyFE-032
-7.,3R3985875F=-07
=7.3u751066F=072
=7.,20375762F =02
=7, 102792HKF=12
~A,9BIGNTIRF=N2
~6RZUBUTRLE =12
=6H,72364258F=N7
-6.5544] 74F=07
—6,4RA51319F =02
~6,39)1R1IGKTE=1/
—6,31 3850Q03FK =7
-6 ,P47869449F =112
-A,18184K4F =07
-6.,1274R244F -2
~-A,04416478F=97
=5,95422047E~0G2
=R B52QPRO4F =7
-5, 74287319E=12
=5.6343ATATF =02
-5,53414151F=07
5. 447645]15E~uy?
=5,37A53R4T7F=-02
-5.31822627E-02
=5,26R63187F=d7
=5.21397A26F=-12
=5,15304318E~u?
~5,07925763F=02
-4,9919R8403F-02
=4 B946656BE=07
-4 ,7937T479F =02
-4 ,69ARROET4FE=07
-4,61344090E-02
-4,537R%415E-02
-4 ,47R51599F-02
-4, 4279T294E~(?
-4 ,37023133E-02
-4 ,324797A1E-02
=4 ,25R85720E-02
-4 ,17R95544E~07
-4,08A69152FE-02
-3,98722524E-02
-3,R8774369E-02
-3,79533736F-02
~3,71490750E-02
-3,64771511F-02
-3,.59099595E-02
=3,.53Rr75254E-02
-3,48349217E-02
-3,41R40309E-02
=-3,33933320E-02
-3,24599289F =2
-3,1420291RE-1y2
-3,03394745F =02
-?,92919303F=02
~2.83395104E~02
-?,75130623E-02

PeU449QuzasE-N]
24U 7 T73378FE=01
?eU5304450F=0)
2eubl2ZALITE=NT
P U651 T00PE=01]
Pevul?o38010NE-01
2. T4TR4F=0]
2.uH373625F =01
?.UBa5R0R4r-01
2.uB4ZP2000E-(01
PauBaUG6P4E~-0]
2,U8%2R695F~(]
e UBHRARLISF =]
PJUNS30352F~01
Pel030A4P4F -1
2. 112R7221E£-01
2el214RARIF =]
2.12827047F=n]
?e132661RRE=(]
2e13450171F~01)
2.13498642F~-01
?413539771F-01
2e13717677F =01
2e1413763]1F=-0n1
?el4Rr32934F=-01
?.15753874E=-01
2.16782406E-01
2.1776HK225F =01
2.18575242E-01
f.l3t2410aF=01
2.19417540F=01
2.195404176-01
Pe19634270E-01
2419838397 7F =01
Pe20319748E~-01
2e21379493F=-01
2.22092972FE-01
2.23243537E-01
2o 243734RTE~(Q1
2425332739E-01
2.260256a7E=01
2.26441782E~-01
2.26650922F=01
?.26825302F=-01
2.27105232E-01
2.,27637574E-01
2.,284B7640E-01]
2.29627053E-01
2,30941413E-01
2.32264739E-01
2633430747E=-01
2.34324136E-01
2434917901E-01
2.35282977E-01
2+355679Q8E=-01
2.35954614E-01
2436001905E~01
2e37T9GH94uE=01
?.3892A950E=01
2 40481R87E=01
2.4208733AF-01
2.43557787F=-01
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1.06000000E+02
1.07000000F+02
1.08000000F+02
1.09000000F+02
1.10000000F+02
1.11000000F+0?
1.12000000E+02

'1.13000000F+02

1.14000000F+02
1.15000000F+02
1.16000000F+02
1.17000000F+02
1.180600000F+n2
1.190000600F+02
1.20000000E+02
1.21000000E+02
1.22000000E+02
1.23000000E+(2
1.24000000E+02
1.25000000FE+02
1.26000000F+07
1.27000000F+02
1.28000000€+02
1.2900000UF+0?
1.30000000F+02
1.31000000F+02
1.32000000F+02
1.3300000CE+02
1.34000000E+02
1.35000000F+02
1.36000000E+07
1.37000000F+02
1.38000000€E+02
1.39000000E+02
1.40000000F+02
1.41000000F+02
1.42000000E+02
1.43000000F+02
1.44000000E+02
1.45000000E+02
1.46000000F+02
144700000VE+0D2
1.48000000€+07
1.49000000F+02
1.50000000F+02
1.51000000F+02
1.52000000F+02
1.53000000F+02
1.54000000F+02
1.55000000E+02
1.56000000F+02
1.57000000F+02
1.58000000F+07
1.59000000E+02
1.60000000E+02
1.61000000F+n2
1.62000000E+02
1.63000000F+02
1.64000000F+02
1.65000000€+02
1.66000000F+02
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2,71557309€E-01
P.71790425E-C1
2. 71757505E-01
2.715334106F-01
2.7125R857E-01
2. T10952RSE-01
2,71176410FE-01
2,71566413F-01
Pe72237057F=-01
2,73381975F-01
2,739402,90E-01
P 14654065 F =01
2,75118034E-01
2, 75305742E-01
2, 75287483E-01
2,75205449E-01
?.,75231556E-01
2,75514769E-01
Pe76134R41F=-01
PeTTuT7T174FE-01
2., 78236A9RFE-(1
P, 79449929E~0 1
?.,80545~A0FE-01
2, R1398732E=01
2,81970341E-21
2,82322206F-01
2,A25998K5F=-01
P ,R2O89RT2E-01
2,8366754E~-01
2. 84725346FE-01
2,B61811R7E-01
2.87933A56E-01
2.,89K15403E-01
2.916380092F-01
2,93256405E-01
2.94608211g~01
2.,95743783E-01
P ,96H12324E-01
2.98020557E~-01
2,99573433E-01
1.,01014371F-01
2,04183490FE-C1
3.07206015E-01
2., 10520058E-01
2.13924440FE-01
2.1724376%E-01
3.20391°23E~0G1
2.”233987A3E-01
2,26416590E-01
1,29676410E-01
2,33429788E-01
3.37879739E-01
2,43125946E-01
2,491401R7E~01
1.55779686E-01
Q,62834760E~01
3.70096773£-01
1, 77425084FE-01
2.,84798<09E~01
3.92317372E-01
4.,00182060F-01

-2.68u30175E-02
~2.615017S04E-02
=2.55170720FE~02
—2.47329604F =02
=-?2,393157225FE=07
=2.29097AAIF-02
=P, 1T4b2A81F=02
-2.04657074E6~u2
-1,92328041E~02
-1.,R0302455F~02
-1.,69370083E-12
=1,59A~33954F 02
-1,50772015F=07
=-1,42122239E-07
-1,32467458F=02
-1,22267024F=02
-1,09968273F-02
-9,.,506360043E-93
=7.99613794F=07
-6,35462740F-03
-4 ,71652211F-0173
=-3,15742525F-073
-1,707"62102F-313
=-3,367241196F~04
Q9,91AR7AA3E-04L
P.36771473F-413
3, RB2U27RK3E~013
5,60562309F-073
T,573765R7F=)3
G,76°,41504F-03
1.21234642E-02
1.45721906F=02
1,70°274083F=02
1.94340160F~02
2.17416699F-07
2.41111008E-02
2.,6516062F=07
2,90730238F=02
3.19141665E-02
3.510145A2F-027
3,8649]1360F=-07
4 ,25%39263F=-u?
4, 67362 164F =02
S.11034652FE=-07
5.55R89304°E-02
A, 01A02574E-02
6,4838440RF=0up
6,97033336F=02
7.,48778382F-07
8,05022712E~-02
R,67033670F=02
9,356680H0E-02
1.01121597€-0)
1.,09338982E-01
1,18149238F~01
1,2746R708F~01
1,377231132-01
1,47413408F~-01
1,58047R79E-01
1,69216524F~-u1
1.,810271R9E-01

?.44754291€-01
?e45h2R674E~01
2.46240433F=01
2e+6T40649F-01
2.47327335FE=01
2.4R18K522F=()1
2.49430342E=01
2.5107070AE=-01
PeH53u05153F=01
2e95051730F=n1
2¢270U32R1FE=01
2.98691600E-01
2.00040833F=~01
2eH1UO93KIRE-DI
2+502000737E-01
P?eO29TRTIRE-N1
2.04244T729E-01
2.65351160E-01
2.681387063F-01
2.7072754/F =01
?.73517173F=01
241629250 uE=01
2. 7R84503RF=-01
P2enlubrPacpE~Ql
2aB2Y9A2079F =01
PeHB4nR9921F=-01
2e36481833F~0}
7« HB5954QKF~N1]
29123451 0€6=-01
2e944R82HLE-0]L
?.98304651E-01
3.U2508847F=01
3.u6842811E-01
341137300RE-01
3,1503R275E-01
3,18719317E-01
3.22249840F-01
3.25885348E-01
3.29934723F-01
3,346T74890E-01
3.40¢73510E~-01
344674341 AE-01
3.53943131F=01
3.010244723E-01
3.69513744F~01
3.774040723E-01
1.862206A4F-01
3,93102008AE-01
L4 4,01294428E6-01
4,10178681F=-01
442013315%E-01
44314456637E-01
4,4424T7542E-01
4.,584791AQE~01
4,73%2R924FE~01
449030346RE~01
5.U7327904E-01
5e24839362E-01
S.428463R8F =01
5.61533896E~01
5.81210140E~01
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1.67000000F+02
1.68000000E+02
1.69000000F+02
1.70000000£+02
1.71000000E+02
1.72000000E+02
1.73000000F+02
1.74000000E+02
1.75000000£+02
1.76000000£+02
1.77000000E+02
1.78000000E+02
1.79000000E+02
1.80000000E+02
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4,08629092E-01
4.,17848042E-01
44,2T7907/A7T2E-Q]
4.38712943E-01
4+49993740E-01
4.61340232E-01
4.72270014E-01
4,82309618E-01
4.91068529E-01
4,98286770E-01
5.03845408E-01
5.07740580E-01
5.10032387E-01
5.10787096E-01

1.,93576771E-01
2.,06009R38F-01
2.,20082506F-01
2,35640288E-01
2.50615212F-01
2.65542905E-01
2,79995668E-01
2,93524106E-01
3.05698512€-01
3.16142179E=-01
3.24551738E-01
3.30703638E-01
3,34449681E-01
3.35707150£-01

feU2206764E-01
6.24757880E-01
6,48890178E-01
6.74353231E-01
7.00608953E=-01
7.26883137E-01
7.522656R2E-01
7.75833724E~01
7s96767041E~01
8.14428943E=01
8.28397146E=01
8.38444218E-01
B.4448206RE-01
84,46494246E-01
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Figure 1.- Cylindrical coordinate system.
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Figure 2.- Comparison of results for an elliptic cone from the present method with those from

Van Dyke's solution (ref. 9). N=0; M=V2 a=0% a=0.57735.
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Figure 3.- Comparison of results for an elliptic cone from the present method with those from
Van Dyke's solution (ref. 9). N=2; M=\V2 a=0° a=0.57735.
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Figure 4.- Comparison of results for an elliptic cone from the present method with those from
Van Dyke's solution (ref. 9). N=8; M= V’z’; a=0% a=0.57735.
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Figure 5.- Comparison of results for an elliptic cone from the present method with those from
Van Dyke's solution (ref. 9). N=32;, M= \E; a=0% a=0.57735.
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Figure 7.- Results for cones of arbitrary cross section from figure 6. N=8;, M= \/5; a=0°,
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Figure 9.- Comparison of results for lifting elliptic cones. N=17; a =102 a =0.57735.
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